An Applied Approach

CALCULUS

An Applied Approach

Applications

Business and Economics

Account balances, 261, 265, 306, 624
Advertising, 472
Advertising awareness, 126, 677, 681, 688
Advertising costs, 157, 647
Annual operating costs, A7
Annual salary, 34
Annuity, 347, 349, 372, 611, 615, 616, 653, A18
Average cost, 194, 212, 221, 225, 248, 647
Average production, 495, 503
Average profit, 225, 493, 495, 503
Average revenue, 495, 503
Average salary, 32, 257
Bolts produced by a foundry, 338
Break-even analysis, 20, 21, 34, 75
Break-even point, 15, 20, 21
Budget analysis, 605
Budget deficit, 359
Budget variance, A12
Capital accumulation, 350
Capital campaign, 384
Capitalized cost, 411
Certificate of deposit, 266
Charitable foundation, 411
Choosing a job, 33
Cobb-Douglas production function, 150, 439, 442, 453, 467, 495, 500
College tuition fund, 385
Complementary and substitute products, 453
Compound interest, 59, 66, 69, 136, 274, 275, 283, 297, 300, 308, 309, 350, 372, 604, 652, A18
Construction, 472
Consumer and producer surplus, 355 , $358,359,373,374,392$
Cost, 24, 47, 59, 65, 102, 126, 136, 176, $185,234,318,320,321,330,350$, 371, 372, 463, 471, 502, 553, 588
Cost, revenue, and profit, 47, 74, 156, 359, 373
Google, 74
Credit card rate, 136
Demand, 47, 75, 110, 125, 148, 150, 214, 241, 249, 265, 284, 292, 307, 308, 330, 337, 384, 393, 448, 478, 502, 579, 580, 588, 589, 595
Depreciation, 30, 76, 136, 257, 274, 301, 350, 616, 653
Doubling time, 281, 310
Dow Jones Industrial Average, 9, 116, 195
Earnings per share, A7
Economics, 115
lululemon, 501
marginal benefits and costs, 321
Pareto's Law, 688, 689

Effective rate of interest, 262, 265, 300, 306
Elasticity of demand, 213, 248, 250
Elasticity and revenue, 210
Endowment, 411, 417
Equilibrium point, 16, 78
Expected sales, 567
Federal debt, 605
Finance, 284
Fuel cost, 116, 356, 358
Future value, 385
Homes, median sales prices, 9, 195
Hourly earnings, 308, 477
Income, A7
expected, 385
personal, 33, 572
Income distribution, 359
Increasing production, 155
Individual retirement account, 604
Inflation rate, 257, 275, 306
Installment loan, A31
Insurance, 572
Inventory
cost, 194, A31
management, 69
replenishment, 126
Investment, 443, 454, 501, 604, 663, 667, 675, 683
Rule of 70, 300
Job offer, 350
Least-Cost Rule (Equimarginal Rule), 471, 472
Lifetime of a product, 577
Linear depreciation, 30, 33, 76
Lorenz curve, 359
Managing a store, 126
Manufacturing, A12
Marginal analysis, 237, 238, 240, 241, 249, 349, 400
Marginal cost, 114, 115, 164, 338, 453, 501
Marginal productivity, 453
Marginal profit, 109, 112, 115, 116, 164
Marginal revenue, 111, 114, 115, 164, 453, 502
Market analysis, 573
Market stabilization, 613
Maximum production level, 467, 468
Maximum profit, 183, 208, 212, 213, 247, 459, 469
Maximum revenue, 205, 207, 212, 213, 247, 271, 274, 275
Minimum average cost, 206, 212, 247, 292, 309
Minimum cost, 202, 203, 213, 464
Monthly payments, 440, 443, 464, 501
Mortgage debt, 350
Office space, 472
Owning
a business, 46
a franchise, 69
Pickup trucks sold in a city, 10
Point of diminishing returns, 192, 194, 204, 247
Present value, 263, 265, 300, 307, 381, $382,384,385,393,401,409,411$, 416, 417, 418
Price, 605
Product units sold, 616
Production, 17, 150, 370, 439, 442, 471, 502, 504, 669, A7, A12
Production levels, A6, A24
Productivity, 194
Profit, 10, 47, 115, 127, 154, 157, 165, $166,176,185,202,234,241,247$, 249, 307, 320, 344, 372, 442, 462, 502, 615, A7, A24
Profit analysis, 174, 176
Property value, 257, 306
Purchasing power of the dollar, 392
Quality control, 125, 411, A11, A12
Reimbursed expenses, 34
Returning phone calls, 590
Revenue, 6, 10, 15, 20, 32, 47, 89, 99, 101, 156, 162, 163, 214, 241, 246, $266,301,306,321,330,337,338$, $358,370,373,384,392,393,402$, 462, 478, 502, 572, 594, 605
and demand, 320
Revenues per share, revenues, and shareholder's equity, Amazon.com, 479
Salary, 605, 616, 653
Salary contract, 69, 77
Sales, 34, 157, 195, 298, 301, 392, 524, 534, 535, 562, 615, 652, 653, 675, A7
Colgate-Palmolive Company, 605
CVS Health Corporation, 166
Dollar General, 17, 418
Fossil, 89, 102
Garmin, 372
of gasoline, 116
Kellogg Company, 6
Kohl's Corporation, 214
Lockheed Martin, 214
Macy's, 176
of organic food, 310
PetSmart, 143
Polaris Industries, 246
Ross stores, 374
Starbucks, 257
Sales growth, 660, 682
Sales per share, 28, 99, 127, 133
Scholarship fund, 411, 417
Seasonal sales, 540, 553, 560, 561
Shareholder's equity, 443, 454
Social Security benefits, 234
Social Security Trust Fund, 359
Stock price, A12

Stores
Dick's Sporting Goods, 604
Tiffany \& Co., 21
Supply, 330
Supply and demand, 20, 75, 157
Testing for defective units, 591
Trade deficit, 113
Trust fund, 265
Useful life, 583, 588
of an appliance, 588
of a battery, 579,589
of a component in a machine, 579
of a mechanical unit, 595
of a printer, 588
Wages, 589

Life Sciences

Biology
bacterial culture, 136, 249, 259, 266, 337, 472
cell growth, 669
child gender, 572
fertility rates, 185
fish population, 307
gestation period of rabbits, 69
hybrid selection, 679, 681, 682
plant growth, 543
population growth, 116, 125, 296, 300, 309, 392, 678, 681, 682, 689
predator-prey cycle, 529, 533
stocking a lake with fish, 463
trout population, 337
weight gain, 669,690
weights of adult male rhesus monkeys, 586
weights of male collies, A12
wildlife management, 241, 663
Births and deaths, 46
Botany, 595
Environment
carbon dioxide, 604
contour map of the ozone hole, 443
natural gas consumed, 530
oxygen level in a pond, 125
pollutant removal, 59, 248
pollutant in a river, 616
recycling bins, 225
size of an oil slick, 157
smokestack emission, 222
Environmental cost, pollutant removal, 68
Forestry, Doyle Log Rule, 165
Hardy-Weinberg Law, 463
Health
blood pressure, 533
body temperature, 115
ear infections treated by doctors, 10
epidemic, 358
HIV cases, 571
nutrition, 472
spread of a disease, 690
U.S. chickenpox decline, 150
velocity of airflow into and out of the lungs, 533, 561
weight loss, 675
Maximum yield of apple trees, 203
Medical science
drug concentration, 683
in bloodstream, 104, 241, 257, 309, 647
length of pregnancy, 589
velocity of air during coughing, 185
Medicine
amount of drug in bloodstream, 114
days until recovery after a medical procedure, 595
drug absorption, 402
duration of an infection, 463
heart transplants, 21
intravenous feeding, 673
prescription drugs, 46
spread of a virus, 307
temperature of a patient, 524
Physiology
body surface area, 249
heart rate, A7
Shannon Diversity Index, 463
Shrub growth, 321, 330
Systolic blood pressure, 123

Social and Behavioral Science

Associate's degrees conferred, 21
Bachelor degrees, number of biological and biomedical science, 176
Consumer awareness
alternative-fueled vehicles, 225
cost of overnight delivery, 77
cost of vitamins, 77
fuel mileage, 266, 589
home mortgage, 293
U.S. Postal Service first class mail rates, 69
Consumer trends
ATM surcharge fee, 301
cars per household, 594
cellular telephone subscribers, 9,143 , 477
consumption of blueberries, 169
consumption of energy, 356
consumption of fruit, 359
consumption of whole milk, 169
coupons used in a grocery store, 588
energy consumption, 552
wind, 75
expenditures on recreation, 435
expenditures on spectator sports, 453
magazine subscribers, 402
marginal utility, 454
multiplier effect, 616, 653
number of download music singles, 309
visitors to a national park, 114,162
Education
ACT scores, 589
attainment, 573
exam scores, 589
exam, true-false questions, 570, 596
GMAT scores, 585
MCAT scores, 595
SAT scores, 274
Employment
construction workers, 530
consumer lending industry, 3
golf course and country club workers, 543
outpatient care centers, 292
private-sector, 3
scenic and sightseeing transportation workers, 534, 543, 552
Internet users, 9, 321
Marginal propensity to consume, 328, 330
Master's degrees, 503
Online banking transactions, A7
Population, 33, 34, 204, 266, 300, 301, 307
average, 345
of the United States, 185, 301, 656
Population density, 492, 495
Population growth, 283, 306, 310, 321, 681, 682
of Australia, 115
of Brazil, 164
of Texas, 256
Poverty level, 195
Psychology
intelligence quotient (IQ), 596
learning curve, 225, 301, 675
learning theory, 266, 274, 283, 293, 308, 579, 683
memory experiment, 390, 392, 416
memory model, 384
migraine prevalence, 102
rate of change, 288
sleep patterns, 365
Stanford-Binet Test (IQ test), 454
Queuing model, 442
Recycling, 77
Research and development, 113
Seizing drugs, 225, 248
Spread of a rumor, 675
Unemployed workers, 78
Vital statistics
median age, 401
number of children per family, 571, 594
working married couples, rate of increase, 321
Work groups, 590

An Applied Approach CALCULUS
 with
 Lalc Chat \& LalcView ${ }^{\text {" }}$

$10 e$

An Applied Approach CALCULUS
 with
 Galc Ghat \& GlcVIEw ${ }^{\text {" }}$

10e

Ron Larson
The Pennsylvania State University
The Behrend College

With the assistance of David C. Falvo

The Pennsylvania State University
The Behrend College

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Calculus: An Applied Approach

 with CalcChat \& CalcView
Tenth Edition

Ron Larson
Product Director: Terry Boyle
Product Manager: Rita Lombard
Content Developer: Erin Brown, Spencer Arritt
Product Assistant: Kathryn Schrumpf
Marketing Manager: Julie Schuster
Content Project Manager: Jennifer Risden
Manufacturing Planner: Doug Bertke
Production Service: Larson Texts, Inc.
Photo Researcher: Lumina Datamatics
Text Researcher: Lumina Datamatics
Text Designer: Larson Texts, Inc.
Cover Designer: Larson Texts, Inc.
Cover Image: Rawpixel/Shutterstock.com molaruso/Shutterstock.com
Compositor: Larson Texts, Inc.
© 2017, 2013, 2009 Cengage Learning
WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2015944034
Student Edition:
ISBN-13: 978-1-305-86091-9
Loose Leaf Edition:
ISBN-13: 978-1-305-95325-3

Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

QR Code is a registered trademark of Denso Wave Incorporated

Printed in the United States of America
Print Number: 01 Print Year: 2015
1 Functions, Graphs, and Limits 1
1.1 The Cartesian Plane and the Distance Formula 2
1.2 Graphs of Equations 11
Project: Number of Stores 21
1.3 Lines in the Plane and Slope 22
Quiz Yourself 34
1.4 Functions 35
1.5 Limits 48
1.6 Continuity 60
Algebra Tutor 70
Summary and Study Strategies 72
Review Exercises 74
Test Yourself 78
2 Differentiation 79
2.1 The Derivative and the Slope of a Graph 80
2.2 Some Rules for Differentiation 91
2.3 Rates of Change: Velocity and Marginals 103
2.4 The Product and Quotient Rules 117
Quiz Yourself 127
2.5 The Chain Rule 128
2.6 Higher-Order Derivatives 137
Project: Cell Phone Subscribers in U.S. 143
2.7 Implicit Differentiation 144
2.8 Related Rates 151
Algebra Tutor 158
Summary and Study Strategies 160
Review Exercises 162
Test Yourself 166
3 Applications of the Derivative 167
3.1 Increasing and Decreasing Functions 168
3.2 Extrema and the First-Derivative Test 177
3.3 Concavity and the Second-Derivative Test 186
3.4 Optimization Problems 196
Quiz Yourself 204
3.5 Business and Economics Applications 205
3.6 Asymptotes 215
Project: Alternative-Fueled Vehicles 225
3.7 Curve Sketching: A Summary 226
3.8 Differentials and Marginal Analysis 235Algebra Tutor242
Summary and Study Strategies 244
Review Exercises 246
Test Yourself 250
4 Exponential and Logarithmic Functions 251
4.1 Exponential Functions 252
4.2 Natural Exponential Functions 258
4.3 Derivatives of Exponential Functions 267
Quiz Yourself 275
4.4 Logarithmic Functions 276
4.5 Derivatives of Logarithmic Functions 285
4.6 Exponential Growth and Decay 294
Project: ATM Surcharge Fee 301
Algebra Tutor 302
Summary and Study Strategies 304
Review Exercises 306
Test Yourself 310
5 Integration and Its Applications 311
5.1 Antiderivatives and Indefinite Integrals 312
5.2 Integration by Substitution and the General Power Rule 322
5.3 Exponential and Logarithmic Integrals 331
Quiz Yourself 338
5.4 Area and the Fundamental Theorem of Calculus 339
5.5 The Area of a Region Bounded by Two Graphs 351
Project: Social Security 359
5.6 The Definite Integral as the Limit of a Sum 360
Algebra Tutor 366
Summary and Study Strategies 368
Review Exercises 370
Test Yourself 374
6 Techniques of Integration 375
6.1 Integration by Parts and Present Value 376
6.2 Integration Tables 386
Project: Purchasing Power of the Dollar 392
Quiz Yourself 393
6.3 Numerical Integration 394
6.4 Improper Integrals 403
Algebra Tutor 412
Summary and Study Strategies 414
Review Exercises 416
Test Yourself 418
7 Functions of Several Variables 419
7.1 The Three-Dimensional Coordinate System 420
7.2 Surfaces in Space 427
7.3 Functions of Several Variables 436
7.4 Partial Derivatives 444
7.5 Extrema of Functions of Two Variables 455
Quiz Yourself 464
7.6 Lagrange Multipliers 465
7.7 Least Squares Regression Analysis 473
Project: Financial Data 479
7.8 Double Integrals and Area in the Plane 480
7.9 Applications of Double Integrals 488
Algebra Tutor 496
Summary and Study Strategies 498
Review Exercises 500
Test Yourself 504
8 Trigonometric Functions 505
8.1 Radian Measure of Angles 506
8.2 The Trigonometric Functions 514
8.3 Graphs of Trigonometric Functions 525
Quiz Yourself 535
8.4 Derivatives of Trigonometric Functions 536
Project: Meteorology 544
8.5 Integrals of Trigonometric Functions 545
Algebra Tutor 554
Summary and Study Strategies 556
Review Exercises 558
Test Yourself 562
9 Probability and Calculus 563
9.1 Discrete Probability 564
Project: Education 573
9.2 Continuous Random Variables 574
9.3 Expected Value and Variance 580
Algebra Tutor 590
Summary and Study Strategies 592
Review Exercises 593
Test Yourself 596
10 Series and Taylor Polynomials 597
10.1 Sequences 598
Project: Revenues 605
10.2 Series and Convergence 606
$10.3 \quad p$-Series and the Ratio Test 617
Quiz Yourself 624
10.4 Power Series and Taylor's Theorem 625
10.5 Taylor Polynomials 635
10.6 Newton's Method 642
Algebra Tutor 648
Summary and Study Strategies 650
Review Exercises 652
Test Yourself 656
11 Differential Equations 657
11.1 Solutions of Differential Equations 658
11.2 Separation of Variables 664
Quiz Yourself 670
11.3 First-Order Linear Differential Equations 671
Project: Weight Loss 675
11.4 Applications of Differential Equations 676
Algebra Tutor 684
Summary and Study Strategies 686
Review Exercises 687
Test Yourself 690
Appendices
Appendix A: Precalculus Review A2
A. 1 The Real Number Line and Order A2
A. 2 Absolute Value of a Real Number A8
A. 3 Exponents and Radicals A13
A. 4 Factoring Polynomials A19
A. 5 Fractions and Rationalization A25
Appendix B: Alternate Introduction to the Fundamental Theorem of Calculus A32
Appendix C: Formulas A41
C. 1 Differentiation and Integration Formulas A41
C. 2 Formulas from Business and Finance A45
Appendix D: Properties and Measurement (Web)*
D. 1 Review of Algebra, Geometry, and Trigonometry
D. 2 Units of Measurements
Appendix E: Graphing Utility Programs (Web)*
Answers to Selected Exercises A47
Answers to Checkpoints A124
Answers to Tech Tutors A134
Index A135
*Available at the text-specific website CengageBrain.com

Preface

Welcome to the Tenth Edition of Calculus: An Applied Approach with CalcChat \& CalcView! I am proud to present this new edition to you. As with all editions, I have been able to incorporate many useful comments from you, our user. In this edition, I introduce several new features and revise others. You will still find what you expecta pedagogically sound, mathematically precise, and comprehensive textbook that includes a multitude of business and life sciences applications.

I am pleased and excited to offer you two brand new websites with this edition-CalcView.com and LarsonAppliedCalculus.com. Both websites were created with the goal of providing you with the resources needed to master Calculus. CalcView.com contains worked-out solution videos for selected exercises in the book, and LarsonAppliedCalculus.com offers multiple resources to supplement your learning experience. Best of all, these websites are completely free.

A theme throughout the book is "IT'S ALL ABOUT YOU." Please pay special attention to the study aids with a red U. These study aids will help you learn calculus, use technology, refresh your algebra skills, and prepare for tests. For an overview of these aids, check out CALCULUS \& YOU on page 0 . In each exercise set, quiz, and test, be sure to notice the reference to CalcChat.com. At this free site, you can download a step-by-step solution to any odd-numbered exercise. You can also work with a tutor, free of charge, during the hours posted at the site. Over the years, thousands of students have visited the site for help.

New To This Edition

Calcyiew ${ }^{" 1}$

The website CalcView.com contains video solutions of selected exercises. Calculus instructors progress step-by-step through solutions, providing guidance to help you solve the exercises. You can use your smartphone's QR Code ${ }^{\circledR}$ reader to scan the codes 颠鼣 and go directly to a video solution. Or you can access the videos at CalcView.com.

[^0]
NEW LarsonAppliedCalculus.com

This companion website offers multiple tools and resources to supplement your learning. Access to these features is free. Watch videos explaining concepts from the book, explore examples, take a diagnostic test, view solutions to the checkpoint problems, and much more.

NEW Data Spreadsheets

Download these editable spreadsheets from LarsonAppliedCalculus.com and use the data to solve exercises.

REVISED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous, relevant, and cover all topics necessary to understand the fundamentals of Calculus. The exercises have been reorganized and titled so that you can better see the connections between examples and exercises. Multi-step, real-life exercises reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the concepts in real-life situations.

Trusted Features

HOW DO YOU SEE IT? Exercise

The How Do You See It? exercise in each section presents a real-life problem that you will solve by visual inspection using the concepts learned in the lesson.

三 Calc Chat ${ }^{\text {® }}$

For the past several years, an independent websiteCalcChat.com—has been maintained to provide free solutions to all odd-numbered problems in the text. Thousands of students have visited the site for practice and help with their homework from live tutors.

Section 5.5 The Area of a Region Bounded by Two Graphs
5.5 The Area of a Region Bounded by Two Graphs

- Find the areas of regions bounded by two graphs.
- Find consumer and producer surpluses.

Area of a Region Bounded by Two Graphs

With a few modifications, you can extend the use of definite integrals from finding the area of a region under a graph to finding the area of a region bounded by two graphs. To see how this is done, consider the region bounded by the graphs of f, $g, x=a$, and $x=b$
as shown in Figure 5.13. If the graphs of both f and g lie above the x-axis, then you can interpret the area of the region between the graphs as the area of the region under the graph of g subtracted from the area of the region under the graph of f, as shown in Figure 5.13.

FIGURE 5.13

Although Figure 5.13 depicts the graphs of f and g lying above the x-axis, this is not necessary, and the same integrand $[f(x)-g(x)]$
can be used as long as both functions are continuous and $g(x) \leq f(x)$ on the interval $[a, b]$.

Area of a Region Bounded by Two Graphs
If f and g are continuous on $[a, b]$ and $g(x) \leq f(x)$ for all x in $[a, b]$, then the area of the region bounded by the graphs of $f, g, x=a$, and $x=b$ (see Figure 5.14) is given by $A=\int_{a}^{b}[f(x)-g(x)] d x$.

Checkpoint

Paired with every example, the Checkpoint problems encourage immediate practice and check your understanding of the concepts presented in the example. Answers to all Checkpoint problems appear at the back of the text to reinforce understanding of the skill sets learned.

Business Capsule

Business Capsules appear at the end of selected sections. These capsules and their accompanying research project highlight business situations related to the mathematical concepts covered in the chapter.

SUMMARIZE

The Summarize feature at the end of each section helps you organize the lesson's key concepts into a concise summary, providing you with a valuable study tool.

STUDY TIP

These hints and tips can be used to reinforce or expand upon concepts, help you learn how to study mathematics, caution you about common errors, address special cases, or show alternative or additional steps to a solution of an example.

TECH TUTOR

The Tech Tutor gives suggestions for effectively using tools such as calculators, graphing calculators, and spreadsheet programs to help deepen your understanding of concepts, ease lengthy calculations, and provide alternate solution methods for verifying answers obtained by hand.

ALGEBRA TUTOR

The Algebra Tutor appears throughout each chapter and offers algebraic support at point of use. This support is revisited in a two-page algebra review at the end of the chapter, where additional details of example solutions with explanations are provided.

SKILLS WARM UP

The Skills Warm Up appears at the beginning of the exercise set for each section. These problems help you review previously learned skills that you will use in solving the section exercises.

Project

The projects at the end of selected sections involve in-depth applied exercises in which you will work with large, real-life data sets, often creating or analyzing models. These projects are offered online at

LarsonAppliedCalculus.com.

47. Project: ATM Surcharge Fee For a project analyzing the average ATM surcharge fee in the United States from 2002 to 2014, visit this text's website at LarsonAppliedCalculus.com.
(Source: Bankrate, Inc.)

Instructor Resources

Media

Complete Solutions Manual

The Complete Solutions Manual provides worked-out solutions for all exercises in the text, including Checkpoints, Quiz Yourself, Test Yourself, and Tech Tutors.

Turn the Light On with MindTap for Larson's Calculus: An Applied Approach Through personalized paths of dynamic assignments and applications, MindTap is a digital learning solution and representation of your course that turns cookie cutter into cutting edge, apathy into engagement, and memorizers into higher-level thinkers.

The Right Content: With MindTap's carefully curated material, you get the precise content and groundbreaking tools you need for every course you teach.

Personalization: Customize every element of your course-from rearranging the Learning Path to inserting videos and activities.
Improved Workflow: Save time when planning lessons with all of the trusted, most current content you need in one place in MindTap.
Tracking Students' Progress in Real Time: Promote positive outcomes by tracking students in real time and tailoring your course as needed based on the analytics.

Learn more at cengage.com/mindtap.

Instructor Companion Site

Everything you need for your course in one place! This collection of book-specific lecture and class tools is available online at cengage.com/login. Access and download PowerPoint presentations, images, solutions, videos, and more.

Cengage Learning Testing Powered by Cognero (ISBN: 978-1-3058-8230-0) is a flexible, online system that allows you to author, edit, and manage test bank content, create multiple test versions in an instant, and deliver tests from your LMS, your classroom, or wherever you want. This is available online at cengage.com/login.

Student Resources

Print

Student Solutions Manual

ISBN 13: 978-1-305-86099-5
The Student Solutions Manual provides complete worked-out solutions to all odd-numbered exercises in the text. In addition, the solutions of all Checkpoint, Quiz Yourself, Test Yourself, and Tech Tutor exercises are included.

Media

MindTap for Larson's Calculus: An Applied Approach

MindTap is a digital representation of your course that provides you with the tools you need to better manage your limited time, stay organized, and be successful. You can complete assignments whenever and wherever you are ready to learn with course material specially customized for you by your instructor and streamlined in one proven, easy-to-use interface. With an array of study tools, you will get a true understanding of course concepts, achieve better grades, and set the groundwork for your future courses.

Learn more at cengage.com/mindtap.

CengageBrain.com

To access additional course materials and companion resources, please visit CengageBrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where free companion resources can be found.

Acknowledgments

I would like to thank my colleagues who have helped me develop this program. Their encouragement, criticisms, and suggestions have been invaluable to me.

I would particularly like to thank the following reviewers of this and previous editions:

Nasri Abdel-Aziz, State University of New York College of Environmental Sciences and Forestry; Carol Achs, Mesa Community College; Alejandro Acuna, Central New Mexico Community College; Lateef Adelani, Harris-Stowe State University, Saint Louis; Frederick Adkins, Indiana University of Pennsylvania; Polly Amstutz, University of Nebraska at Kearney; George Anastassiou, University of Memphis; Judy Barclay, Cuesta College; Sheeny Behmard, Chemeketa Community College; Jean Michelle Benedict, Augusta State University; Dona Boccio, Queensborough Community College; George Bradley, Duquesne University; David Bregenzer, Utah State University; Ben Brink, Wharton County Junior College; William Burgin, Gaston College; Mary Chabot, Mt. San Antonio College; Joseph Chance, University of Texas-Pan American; Jimmy Chang, St. Petersburg College; John Chuchel, University of California; Derron Coles, Oregon State University; Miriam E. Connellan, Marquette University; William Conway, University of Arizona; Karabi Datta, Northern Illinois University; Keng Deng, University of Louisiana at Lafayette; Liam Donohoe, Providence College; Roger A. Engle, Clarion University of Pennsylvania; David French, Tidewater Community College; Randy Gallaher, Lewis \& Clark Community College; Perry Gillespie, Fayetteville State University; Jose Gimenez, Temple University; Betty Givan, Eastern Kentucky University; Walter J. Gleason, Bridgewater State College; Shane Goodwin, Brigham Young University of Idaho; Mark Greenhalgh, Fullerton College; Harvey Greenwald, California Polytechnic State University; Karen Hay, Mesa Community College; Raymond Heitmann, University of Texas at Austin; Larry Hoehn, Austin Peay State University; William C. Huffman, Loyola University of Chicago; Kala Iyer, Los Angeles Valley College; Arlene Jesky, Rose State College; Raja Khoury, Collin County Community College; Ronnie Khuri, University of Florida; Bernadette Kocyba, J. Sergeant Reynolds Community College; Duane Kouba, University of California—Davis; James A. Kurre, The Pennsylvania State University; Melvin Lax, California State University—Long Beach; Norbert Lerner, State University of New York at Cortland; Yuhlong Lio, University of South Dakota; Peter J. Livorsi, Oakton Community College; Bob Lombard, Evergreen Valley College; Ivan Loy, Front Range Community College; Peggy Luczak, Camden County College; Lewis D. Ludwig, Denison University; Samuel A. Lynch, Southwest Missouri State University; Augustine Maison, Eastern Kentucky University; Andrea Marchese, Pace University; Kevin McDonald, Mt. San Antonio College; Ronda McDonald, Colorado Mesa University; Earl H. McKinney, Ball State University; Randall McNiece, San Jacinto College; Philip R. Montgomery, University of Kansas; John Nardo, Oglethorpe University; Mike Nasab, Long Beach City College; Karla Neal, Louisiana State University; Benselamonyuy Ntatin, Austin Peay State University; James Osterburg, University of Cincinnati; Darla Ottman, Elizabethtown Community \& Technical College; William Parzynski, Montclair State University; Scott Perkins, Lake Sumter Community College; Laurie Poe, Santa Clara University; Maijian Qian, California State University, Fullerton; Adelaida Quesada, Miami Dade College—Kendall; Brooke P. Quinlan, Hillsborough Community College; David Ray, University of Tennessee at Martin; Rita Richards, Scottsdale Community College; Stephen B. Rodi, Austin Community College; Carol Rychly, Augusta State University;

Yvonne Sandoval-Brown, Pima Community College; Richard Semmler, Northern Virginia Community College-Annandale; Bernard Shapiro, University of Massachusetts-Lowell; Mike Shirazi, Germanna Community College; Rick Simon, University of La Verne; Judy Smalling, St. Petersburg College; Jane Y. Smith, University of Florida; Billie Steinkamp, Arkansas Northeastern College; Marvin Stick, University of Massachusetts—Lowell; Eddy Stringer, Tallahassee Community College; DeWitt L. Sumners, Florida State University; Devki Talwar, Indiana University of Pennsylvania; Linda Taylor, Northern Virginia Community College; Stephen Tillman, Wilkes University; Jay Wiestling, Palomar College; Jonathan Wilkin, Northern Virginia Community College; Carol G. Williams, Pepperdine University; John Williams, St. Petersburg College; Ted Williamson, Montclair State University; Melvin R. Woodard, Indiana University of Pennsylvania; Carlton Woods, Auburn University at Montgomery; Jan E. Wynn, Brigham Young University; Robert A.Yawin, Springfield Technical Community College; Charles W. Zimmerman, Robert Morris College

My thanks to Robert Hostetler, The Pennsylvania State University, The Behrend College, Bruce Edwards, University of Florida, and David Heyd, The Pennsylvania State University, The Behrend College, for their significant contributions to previous editions of this text.

I would also like to thank the staff at Larson Texts, Inc. who assisted with proofreading the manuscript, preparing and proofreading the art package, and checking and typesetting the supplements.

On a personal level, I am grateful to my spouse, Deanna Gilbert Larson, for her love, patience, and support. Also, a special thanks goes to R. Scott O'Neil.

If you have suggestions for improving this text, please feel free to write to me. Over the past two decades I have received many useful comments from both instructors and students, and I value these comments very highly.

Ron Larson, Ph.D. Professor of Mathematics Penn State University www.RonLarson.com

CALCULUS \& YOU

Every feature in this text is designed to help you learn calculus. Whenever you see a red \mathbf{U}, pay special attention to the study aid. These study aids represent years of experience in teaching students just like you. Ron Larson

STUDY TIP

The notation $\partial z / \partial x$ is read as "the partial derivative of z with respect to x," and $\partial z / \partial y$ is read as "the partial derivative of z with respect to y."

TECH TUTOR

If you have access to a symbolic integration utility, try using it to find antiderivatives.

ALGEBRA TUTOR

Finding intercepts involves solving equations. For a review of some techniques for solving equations, see page 71 .

HOW DO YOU SEE IT?

SUMMARIZE

SKILLS WARM UP

SUMMARY AND STUDY STRATEGIES

QUIZ YOURSELF

TEST YOURSELF

The Study Tips occur at point of use throughout the text. They represent common questions that students ask me, insights into understanding concepts, and alternative ways to look at concepts. For instance, the Study Tip at the left provides insight on how to read mathematical notation.

The Tech Tutors give suggestions on how you can use various types of technology to help understand the material. This includes graphing calculators, computer graphing programs, and spreadsheet programs such as Excel. For instance, the Tech Tutor at the left points out that some calculators and some computer programs are capable of symbolic integration.

Throughout years of teaching, I have found that the greatest stumbling block to success in calculus is a weakness in algebra. Each time you see an Algebra Tutor, please read it carefully. Then, flip ahead to the referenced page and give yourself a chance to enjoy a brief algebra refresher. It will be time well spent.

The How Do You See It? question in each exercise set helps you visually summarize concepts without messy computations.

The Summarize outline at the end of each section asks you to write each learning objective in your own words.

The Skills Warm Up exercises that precede each exercise set will help you review previously learned skills.

The Summary and Study Strategies, coupled with the Review Exercises are designed to help you organize your thoughts as you prepare for a chapter test.

The Quiz Yourself occurs midway in each chapter. Take each of these quizzes as you would take a quiz in class.

The Test Yourself occurs at the end of each chapter. All questions are answered so you can check your progress.

Example 5 on page 15 shows how the point of intersection of two graphs can be used to find the break-even point for a company manufacturing and selling a product.

1 Functions, Graphs, and Limits

1.1 The Cartesian Plane and the Distance Formula

1.2 Graphs of Equations

1.3 Lines in the Plane and Slope
1.4 Functions
1.5 Limits
1.6 Continuity

1.1 The Cartesian Plane and the Distance Formula

In Exercise 29 on page 9, you will use a line graph to estimate the Dow Jones Industrial Average.

FIGURE 1.2

FIGURE 1.3

- Plot points in a coordinate plane and represent data graphically.
- Find the distance between two points in a coordinate plane.
- Find the midpoint of a line segment connecting two points.
- Translate points in a coordinate plane.

The Cartesian Plane

Just as you can represent real numbers by points on a real number line, you can represent ordered pairs of real numbers by points in a plane called the rectangular coordinate system, or the Cartesian plane, after the French mathematician René Descartes (1596-1650).

The Cartesian plane is formed by using two real number lines intersecting at right angles, as shown in Figure 1.1. The horizontal real number line is usually called the \boldsymbol{x}-axis, and the vertical real number line is usually called the \boldsymbol{y}-axis. The point of intersection of these two axes is the origin, and the two axes divide the plane into four parts called quadrants.

The Cartesian Plane
FIGURE 1.1

Each point in the plane corresponds to an ordered pair (x, y) of real numbers x and y, called coordinates of the point. The \boldsymbol{x}-coordinate represents the directed distance from the y-axis to the point, and the y-coordinate represents the directed distance from the x-axis to the point, as shown in Figure 1.2.

The notation (x, y) denotes both a point in the plane and an open interval on the real number line. The context will tell you which meaning is intended.

EXAMPLE 1 Plotting Points in the Cartesian Plane

Plot the points

$$
(-1,2), \quad(3,4), \quad(0,0), \quad(3,0), \quad \text { and } \quad(-2,-3)
$$

SOLUTION To plot the point

imagine a vertical line through -1 on the x-axis and a horizontal line through 2 on the y-axis. The intersection of these two lines is the point $(-1,2)$. The other four points can be plotted in a similar way and are shown in Figure 1.3.

Checkpoint 1 Worked-out solution available at LarsonAppliedCalculus.com
Plot the points

$$
(-3,2), \quad(4,-2), \quad(3,1), \quad(0,-2), \quad \text { and } \quad(-1,-2)
$$

Using a rectangular coordinate system allows you to visualize relationships between two variables. In Example 2, data are represented graphically by points plotted in a rectangular coordinate system. This type of graph is called a scatter plot.

EXAMPLE 2 Sketching a Scatter Plot

The numbers E (in millions of people) of private-sector employees in the United States from 2005 through 2013 are shown in the table, where t represents the year. Sketch a scatter plot of the data. (Source: U.S. Bureau of Labor Statistics)

DATA	t	2005	2006	2007	2008	2009	2010	2011	2012	2013
	E	112	114	116	115	109	108	110	112	115

SOLUTION To sketch a scatter plot of the data given in the table, represent each pair of values by an ordered pair

$$
(t, E)
$$

and plot the resulting points, as shown in Figure 1.4. For instance, the first pair of values is represented by the ordered pair

$$
(2005,112)
$$

Note that the break in the t-axis indicates that the numbers between 0 and 2005 have been omitted, and the break in the E-axis indicates that the numbers between 0 and 104 have been omitted.

FIGURE 1.4

Checkpoint 2 Worked-out solution available at LarsonAppliedCalculus.com

The numbers E (in thousands of people) of employees in the consumer lending industry in the United States from 2005 through 2013 are shown in the table, where t represents the year. Sketch a scatter plot of the data. (Source: U.S. Bureau of Labor Statistics)

DATA	t	2005	2006	2007	2008	2009	2010	2011	2012	2013

In Example 2, $t=1$ could have been used to represent the year 2005. In that case, the horizontal axis would not have been broken, and the tick marks would have been labeled 1 through 9 (instead of 2005 through 2013).

The scatter plot in Example 2 is one way to represent the given data graphically. Another technique, a bar graph, is shown in the figure at the right. If you have access to a graphing utility, try using it to represent the data given in Example 2 graphically.

Another way to represent data is with a line graph (see Exercise 29).

Total Private Employment in the U.S.

The Distance Formula

Recall from the Pythagorean Theorem that, for a right triangle with hypotenuse of length c and sides of lengths a and b, you have

$$
a^{2}+b^{2}=c^{2} \quad \text { Pythagorean Theorem }
$$

as shown in Figure 1.5. Note that the converse is also true. That is, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Suppose you want to determine the distance d between two points

$$
\left(x_{1}, y_{1}\right) \quad \text { and } \quad\left(x_{2}, y_{2}\right)
$$

in the plane. These two points can form a right triangle, as shown in Figure 1.6. The length of the vertical side of the triangle is

$$
\left|y_{2}-y_{1}\right|
$$

and the length of the horizontal side is

$$
\left|x_{2}-x_{1}\right|
$$

By the Pythagorean Theorem, you can write

$$
\begin{aligned}
d^{2} & =\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2} \\
d & =\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}} \\
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

This result is the Distance Formula.

Pythagorean Theorem
FIGURE 1.5

Distance Between Two Points FIGURE 1.6

The Distance Formula

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

EXAMPLE 3 Finding α Distance

Find the distance between the points $(-2,1)$ and $(3,4)$.

FIGURE 1.7

SOLUTION Let $\left(x_{1}, y_{1}\right)=(-2,1)$ and $\left(x_{2}, y_{2}\right)=(3,4)$. Then apply the Distance Formula as shown.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{[3-(-2)]^{2}+(4-1)^{2}} & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =\sqrt{(5)^{2}+(3)^{2}} & & \text { Simplify. } \\
& =\sqrt{34} & & \text { Simplify. } \\
& \approx 5.83 & & \text { Use a calculator. }
\end{aligned}
$$

So, the distance between the points is about 5.83 units. Note in Figure 1.7 that a distance of 5.83 looks about right.

Checkpoint 3 Worked-out solution available at LarsonAppliedCalculus.com
Find the distance between the points $(-2,1)$ and $(2,4)$.

FIGURE 1.8

FIGURE 1.9

EXAMPLE 4 Verifying a Right Triangle

Use the Distance Formula to show that the points

$$
(2,1), \quad(4,0), \quad \text { and } \quad(5,7)
$$

are vertices of a right triangle.
SOLUTION The three points are plotted in Figure 1.8. Using the Distance Formula, you can find the lengths of the three sides as shown below.

$$
\begin{aligned}
& d_{1}=\sqrt{(5-2)^{2}+(7-1)^{2}}=\sqrt{9+36}=\sqrt{45} \\
& d_{2}=\sqrt{(4-2)^{2}+(0-1)^{2}}=\sqrt{4+1}=\sqrt{5} \\
& d_{3}=\sqrt{(5-4)^{2}+(7-0)^{2}}=\sqrt{1+49}=\sqrt{50}
\end{aligned}
$$

Because

$$
d_{1}^{2}+d_{2}^{2}=45+5=50=d_{3}^{2}
$$

you can apply the converse of the Pythagorean Theorem to conclude that the triangle must be a right triangle.

Checkpoint 4 Worked-out solution available at LarsonAppliedCalculus.com
Use the Distance Formula to show that the points $(2,-1),(5,5)$, and $(6,-3)$ are vertices of a right triangle.

The figures provided with Examples 3 and 4 were not really essential to the solution. Nevertheless, it is strongly recommended that you develop the habit of including sketches with your solutions-even when they are not required.

EXAMPLE 5 Finding the Length of α Pass

In a football game, a quarterback throws a pass from the 5-yard line, 20 yards from one sideline. The pass is caught by a wide receiver on the 45 -yard line, 50 yards from the same sideline, as shown in Figure 1.9. How long is the pass?

SOLUTION You can find the length of the pass by finding the distance between the points $(20,5)$ and $(50,45)$.

$$
\begin{aligned}
d & =\sqrt{(50-20)^{2}+(45-5)^{2}} & & \text { Distance Formula } \\
& =\sqrt{900+1600} & & \text { Simplify. } \\
& =50 & & \text { Simplify. }
\end{aligned}
$$

So, the pass is 50 yards long.

Checkpoint 5 Worked-out solution available at LarsonAppliedCalculus.com

A quarterback throws a pass from the 10-yard line, 10 yards from one sideline. The pass is caught by a wide receiver on the 30 -yard line, 25 yards from the same sideline. How long is the pass?

STUDY TIP

In Example 5, the scale along the goal line showing distance from the sideline does not normally appear on a football field. However, when you use coordinate geometry to solve real-life problems, you are free to place the coordinate system in any way that is convenient for the solution of the problem.

FIGURE 1.10

FIGURE 1.11

The Midpoint Formula

To find the midpoint of the line segment that joins two points in a coordinate plane, find the average values of the respective coordinates of the two endpoints.

The Midpoint Formula

The midpoint of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

EXAMPLE 6 Finding the Midpoint of a Line Segment

Find the midpoint of the line segment joining the points

$$
(-5,-3) \quad \text { and } \quad(9,3)
$$

SOLUTION Let $\left(x_{1}, y_{1}\right)=(-5,-3)$ and $\left(x_{2}, y_{2}\right)=(9,3)$.

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & & \text { Midpoint Formula } \\
& =\left(\frac{-5+9}{2}, \frac{-3+3}{2}\right) & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =(2,0) & & \text { Simplify. }
\end{aligned}
$$

The midpoint of the line segment is $(2,0)$, as shown in Figure 1.10.

Checkpoint 6 Worked-out solution available at LarsonAppliedCalculus.com

Find the midpoint of the line segment joining the points

$$
(-6,2) \quad \text { and } \quad(2,8)
$$

EXAMPLE 7 Estimating Ānnual Revenues

McDonald's Corporation had annual revenues of about $\$ 27.0$ billion in 2011 and about $\$ 28.1$ billion in 2013. Without knowing any additional information, estimate the 2012 annual revenues. (Source: McDonald's Corp.)
SOLUTION One solution to the problem is to assume that revenues followed a linear pattern. Then you can estimate the 2012 revenues by finding the midpoint of the line segment connecting the points $(2011,27.0)$ and $(2013,28.1)$.

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & & \text { Midpoint Formula } \\
& =\left(\frac{2011+2013}{2}, \frac{27.0+28.1}{2}\right) & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} \\
& =(2012,27.55) & & \text { Simplify. }
\end{aligned}
$$

So, you can estimate that the 2012 revenues were about $\$ 27.55$ billion, as shown in Figure 1.11. (The actual 2012 revenues were about $\$ 27.6$ billion.)

Checkpoint 7 Worked-out solution available at LarsonAppliedCalculus.com

Kellogg Company had annual sales of about $\$ 13.2$ billion in 2011 and about $\$ 14.8$ billion in 2013. Without knowing any additional information, estimate the 2012 annual sales. (Source: Kellogg Co.)

Many movies now use extensive computer graphics, much of which consists of transformations of points in two- and three-dimensional space. The photo above is from The Amazing Spider-Man. The movie's animators used computer graphics to design the scenery, characters, motion, and even the lighting throughout much of the film.

Translating Points in the Plane

Much of computer graphics consists of transformations of points in a coordinate plane. One type of transformation, a translation, is illustrated in Example 8. Other types of transformations include reflections, rotations, and stretches.

EXAMPLE 8 Translating Points in the Plane

Figure 1.12(a) shows the vertices of a parallelogram. Find the vertices of the parallelogram after it has been translated four units to the right and two units down.

SOLUTION To translate each vertex four units to the right, add 4 to each x-coordinate. To translate each vertex two units down, subtract 2 from each y-coordinate.
Original Point
$(1,0)$
$(3,2)$
$(3,6)$
$(1,4)$

Translated Point

$(1+4,0-2)=(5,-2)$
$(3+4,2-2)=(7,0)$
$(3+4,6-2)=(7,4)$
$(1+4,4-2)=(5,2)$
The translated parallelogram is shown in Figure 1.12(b).

Checkpoint 8 Worked-out solution available at LarsonAppliedCalculus.com

Find the vertices of the parallelogram in Example 8 after it has been translated two units to the left and four units down.

SUMMARIZE (Section 1.1)

1. Describe the Cartesian plane (page 2). For an example of plotting points in the Cartesian plane, see Example 1.
2. Describe a scatter plot (page 3). For an example of a scatter plot, see Example 2.
3. State the Distance Formula (page 4). For examples of using the Distance Formula, see Examples 3, 4, and 5.
4. State the Midpoint Formula (page 6). For an example of using the Midpoint Formula, see Example 6.
5. Describe a real-life example of how the Midpoint Formula can be used to estimate annual revenues (page 6, Example 7).
6. Describe how to translate points in the Cartesian plane (page 7). For an example of translating points in the Cartesian plane, see Example 8.

AF archive/Alamy
iStockphoto.com/PhotoEuphoria

SKILLS WARM UP 1.1

The following warm-up exercises involve skills that were covered in a previous course. You will use these skills in the exercise set for this section. For additional help, review Appendix A.3.

In Exercises 1-6, simplify the expression.

1. $\frac{5+(-4)}{2}$
2. $\frac{-3+(-1)}{2}$
3. $\sqrt{(3-6)^{2}+[1-(-5)]^{2}}$
4. $\sqrt{(-2-0)^{2}+[-7-(-3)]^{2}}$
5. $\sqrt{27}+\sqrt{12}$
6. $\sqrt{8}-\sqrt{18}$

In Exercises 7-10, solve for x or y.
7. $\frac{x+(-5)}{2}=7$
8. $\frac{-7+y}{2}=-3$
9. $\sqrt{(3-x)^{2}+(7-4)^{2}}=\sqrt{45}$
10. $\sqrt{(6-2)^{2}+(-2-y)^{2}}=\sqrt{52}$

Exercises 1.1

Plotting Points in the Cartesian Plane In Exercises 1 and 2, plot the points in the Cartesian plane. See Example 1.

1. $(-5,3),(1,-1),(-2,-4),(2,0),(1,4)$
2. $(0,-4),(5,1),(-3,5),(2,-2),(-6,-1)$

Finding a Distance and the Midpoint of a Line Segment In Exercises 3-12, (a) plot the points, (b) find the distance between the points, and (c) find the midpoint of the line segment joining the points. See Examples 1, 3 , and 6.
3. $(3,1),(5,5)$
4. $(-3,2),(3,-2)$
5. $(-3,7),(1,-1)$
6. $(2,2),(4,14)$
7. $(2,-12),(8,-4)$
8. $(-5,-2),(7,3)$
9. $\left(\frac{1}{2}, 1\right),\left(-\frac{3}{2},-5\right)$
10. $\left(\frac{2}{3},-\frac{1}{3}\right),\left(\frac{5}{6}, 1\right)$
11. $(0,-4.8),(0.5,6)$
12. $(5.2,6.4),(-2.7,1.8)$

Verifying a Right Triangle In Exercises 13-16, (a) find the length of each side of the right triangle and (b) show that these lengths satisfy the Pythagorean Theorem. See Example 4.
13.

14.

15.

16.

Verifying a Polygon In Exercises 17-20, show that the points form the vertices of the indicated polygon. (A rhombus is a quadrilateral whose sides have the same length.)
17. Right triangle: $(0,1),(3,7),(4,-1)$
18. Isosceles triangle: $(1,-3),(3,2),(-2,4)$
19. Rhombus: $(0,0),(1,2),(2,1),(3,3)$
20. Parallelogram: $(0,1),(3,7),(4,4),(1,-2)$

Finding Values In Exercises 21 and 22, find the value(s) of x such that the distance between the points is 5 .
21. $(1,0),(x,-4)$
22. $(2,-1),(x, 2)$

Finding Values In Exercises 23 and 24, find the value(s) of y such that the distance between the points is 8 .
23. $(-3,0),(-5, y)$
24. $(4,-6),(4, y)$

[^1]25. Sports A soccer player passes the ball from a point that is 18 yards from an endline and 12 yards from a sideline. The pass is received by a teammate who is 42 yards from the same endline and 50 yards from the same sideline, as shown in the figure. How long is the pass?

26. Sports The first soccer player in Exercise 25 passes the ball to another teammate who is 37 yards from the same endline and 33 yards from the same sideline. How long is the pass?

Graphing Data In Exercises 27 and 28, use a graphing utility to graph a scatter plot, a bar graph, and a line graph to represent the data. Describe any trends that appear.
27. Consumer Trends The numbers (in billions) of individuals using the Internet in the world for 2006 through 2013 are shown in the table. (Source: International Telecommunications Union)

DATA	Year	2006	2007	2008
2009				
Individuals	1.151	1.365	1.561	1.751
Year 2010 2011 2012 2013 Individuals 2.032 2.271 2.510 2.710				

Spreadsheet at LarsonAppliedCalculus.com
28. Consumer Trends The numbers (in millions) of cellular telephone subscribers in the United States for 2006 through 2013 are shown in the table. (Source: CTIA-The Wireless Association)

DATA	Year	2006	2007	2008	2009
	Subscribers	233.0	255.4	270.3	285.6

Year	2010	2011	2012	2013
Subscribers	296.3	316.0	326.5	335.7

Spreadsheet at LarsonAppliedCalculus.com
29. Dow Jones Industrial Average The graph shows the Dow Jones Industrial Average for common stocks. (Source: S\&P Dow Jones Indices LLC)

(a) Estimate the Dow Jones Industrial Average for March 2013, July 2013, and July 2014.
(b) Estimate the percent increase or decrease in the Dow Jones Industrial Average from December 2013 to January 2014.
30. Home Sales The graph shows the median sales prices (in thousands of dollars) of existing one-family homes sold in the United States from 2006 through 2013. (Source: National Association of Realtors)

(a) Estimate the median sales prices of existing one-family homes for 2007, 2009, and 2012.
(b) Estimate the percent increase or decrease in the median value of existing one-family homes from 2011 to 2012.

The symbol A indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by use of appropriate technology.

[^0]: QR Code is a registered trademark of Denso Wave Incorporated

[^1]:

